If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7^2+y^2=65
We move all terms to the left:
7^2+y^2-(65)=0
determiningTheFunctionDomain y^2-65+7^2=0
We add all the numbers together, and all the variables
y^2-16=0
a = 1; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·1·(-16)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*1}=\frac{-8}{2} =-4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*1}=\frac{8}{2} =4 $
| 3400=5*385(x-10) | | 14-t-14=18-14 | | 9.6=3v | | 4y-2×=8 | | 1/3x+3=5/6 | | 5(3x−5)=4(x−2)+10 | | (X+53)+(3x+7)=180 | | 2(4x-5)=6x+14 | | 4(7x+2=92 | | 8x^2-74=0 | | 12=a9−7 | | 4(1+x)=3(2x-1) | | 16y+39=71 | | 88/b=-44 | | 2/5(x+4)=6 | | 12-x=2x-9 | | n/2−1=2 | | 12k-5k-5k=8 | | n2− 1= 2 | | t/3+7=10 | | 5y-3y-14=25.86 | | 2x^-9x+10=0 | | (2x+25)=180 | | -5x-178=898 | | 2+34x+110=180 | | 32=-6v+4(v+7) | | F(v)=6v+8 | | x-10.5=-11.6 | | 15x-5x=10 | | w/3-7=-8* | | 2(5×+z)=30×+3+10 | | 12a-8=3a+9 |